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Abstract 

The rational design of novel high-performance materials is imperative to sustainably 

addressing the unprecedented challenges such as climate change, increasing energy demands, 

and pollution that are associated with anthropogenic activities.  Design of novel materials has 

traditionally relied on the forward design process, a trial-and-error based approach where 

candidates are systematically synthesized, characterized, and finally benchmarked for its targeted 

application. The sequential forward design process is conceptually straightforward and has 

driven many major scientific discoveries over the years; however, this empirical methodology is 

inefficient as it is both time-consuming and resource-intensive due to the vast size of the 

chemical space. Despite advances in automated high-throughput experimental techniques that 

improve design space exploration rates by multiple orders-of-magnitude, this naïve brute-force 

approach has motivated development of inverse design approaches to guide rational design. 

Inverse design involves starting with a target material property and searching for designs that 

meet the specified criteria. Intelligent and efficient navigation of high-dimensional design spaces 

is required to address the intrinsic challenge that plagues inverse design problems as they often 

are ill-posed (or weakly conditioned) and may not have unique solutions.  

In this thesis, we focus on developing novel physics-based and data-driven in-silico 

methodologies to solve inverse design problems for engineering novel materials (catalysts and 

polymeric materials) to drive high-throughput experimentation. We combine first-principles 

calculations with modern computing and statistical techniques such as Bayesian Inference, 

Bayesian Optimization, and machine learning to address two separate thrusts: (1) in-silico driven 
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spectroscopic analysis of material structure and (2) efficient inverse design of high-performance 

materials.  

In Chapter 2, we combine data-based approaches with physics-driven surrogate models to 

develop a high-throughput methodology to predict catalyst structure directly from adsorbate 

infrared spectroscopy for supported subnanometer clusters. In Chapter 3, we present a novel 

plasma-driven methodology for synthesizing shape-controlled nano-catalysts and develop a 

computational methodology for identifying and monitoring structure during the synthesis 

procedure directly from adsorbate infrared spectroscopy and X-ray photoelectron spectroscopy. 

In Chapter 4, we study the fluxional nature of supported catalysts due to temperature from X-ray 

spectroscopy and elucidate structural changes using computational methods for structure-

dependent chemistries. In Chapter 5, we present a novel molecular dynamics driven 

methodology called Rapid Analysis of Polymer Structure and Inverse Design strategY 

(RAPSIDY) to drive high-throughput screening of block copolymers stability with multiscale 

structures and accelerate the process over traditional computational methods by 2-orders-of-

magnitude. In Chapter 6, we present a new version to RAPSIDY, RAPSIDY 2.0, to drive inverse 

design of high-performance block copolymers that exhibit desired macroscale material properties 

(e.g., tensile strength and thermal conductivity) using a combination of molecular dynamics and 

Bayesian optimization-driven active learning. Finally, in Chapter 7, the conclusions of the works 

presented in this dissertation are summarized and future research directions are discussed. 


