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ABSTRACT 

 

Catalytic processes produce most of the chemicals today and will continue to provide 

energy and materials for future generations. Advances in catalyst discovery and efficient 

industrial processes could mitigate climate change and increase sustainable energy supply. 

Experimental techniques, such as spectroscopy and microscopy, are often used to characterize 

catalysts. However, their spatial and temporal resolutions make direct observations under 

working conditions challenging. Computational tools can complement and potentially extend the 

experiments. Multiscale modeling simulates the physical and chemical phenomena at multiple 

time and length scales and provides a first-principles-based understanding of complex catalytic 

systems. Despite the recent surge in computation power, models are still computationally 

prohibitive when extensive evaluations are required.  

One practical approach is to approximate expensive models with surrogate models. 

Machine learning can supply efficient surrogates, identify nonlinear correlations, and provide 

physical insights. In addition, quantitative structure-property relations, which map catalytic 

structures to performance, can allow further exploration and enable the inverse design. Active 

learning could accelerate the search for the optimal conditions or materials in the design space. 

Throughout this thesis, we develop machine-learning-enabled multiscale modeling frameworks 

for catalysis and engineering systems. The workflow involves high-quality data generation from 

the first-principles or experiments, efficient algorithm design, and open-source software 

development. We demonstrate our methodology to subnanometer supported catalysts and 

biomass utilization. 

First, we develop a multiscale modeling framework for supported single atom and 

subnanometer cluster catalysts. The framework integrates a comprehensive toolset including 

density functional theory (DFT) calculations performed by collaborators, genetic algorithm-

based structure optimization, machine learning, equilibrium-based Metropolis Monte Carlo, and 



kinetic Monte Carlo (KMC) simulations. We choose Pd single atoms and subnanometer clusters 

of a few atoms (size, n = 1-55) on CeO2(111) in a CO atmosphere as a case study. We first 

investigate the structures of Pdn clusters and CO adsorption energies on various sites using DFT. 

DFT supplies high-quality first-principles data to train machine learning Hamiltonians, which 

represent efficient structure-to-energy mappings. Combined with the Hamiltonians, Monte-

Carlo-based structure optimization algorithms, such as a cluster genetic algorithm, determine low 

energy structures. Active learning improves the model accuracy by passing the predicted 

structures to DFT and using the structure-energy DFT data to train the Hamiltonians iteratively. 

KMC simulations track the structure evolution of the catalysts against the real-time and predict 

the time scales of elementary events under the working conditions. The framework elucidates the 

stability, structures, and dynamics of supported metal clusters that are bare or exposed to an 

adsorbate used for characterization, e.g., CO in infrared spectroscopy. The methodology can be 

applied to any metal/support system. 

Second, we create frameworks and software tools to facilitate experimental design and 

interpret experimental data for biomass utilization. Active learning algorithms, such as Bayesian 

optimization, can be used to gain well-informed decisions on what computations or experiments 

to run to reduce time or materials. We test the framework on various kinetic models and 

experiments. One example showcases that the surrogate model accurately describes the original 

microkinetic model. Bayesian optimization locates the maximum 5-hydroxymethyl furfural 

(HMF) yield in fructose conversion to HMF, a platform chemical to many valuable bio-products. 

We also develop a multiscale modeling framework to generate feasible lignin structures that 

match experimental data for various lignin feedstocks. The structures are encoded in both 

SMILES strings and molecular graphs, allowing fast computation and visualization. The 

structure libraries generated can enable future kinetics modeling and close the gap between 

model predictions and experimental observables. 

 


